Kamis, 19 Januari 2017

Weka Pengujian

Gunakan data sbb:


@relation weather.symbolic

@attribute outlook {sunny, overcast, rainy}
@attribute temperature {hot, mild, cool}
@attribute humidity {high, normal}
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast,cool,normal,TRUE,yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes
overcast,mild,high,TRUE,yes
overcast,hot,normal,FALSE,yes
rainy,mild,high,TRUE,no



C45 atau J48 Analisa:
J48 pruned tree
------------------

outlook = sunny
|   humidity = high: no (3.0)
|   humidity = normal: yes (2.0)
outlook = overcast: yes (4.0)
outlook = rainy
|   windy = TRUE: no (2.0)
|   windy = FALSE: yes (3.0)

Number of Leaves  : 5

Size of the tree : 8


Time taken to build model: 0 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0 seconds

=== Summary ===

Correctly Classified Instances          14              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1    
Mean absolute error                      0    
Root mean squared error                  0    
Relative absolute error                  0      %
Root relative squared error              0      %
Total Number of Instances               14    

=== Detailed Accuracy By Class ===

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class
                 1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000     yes
                 1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000     no
Weighted Avg.    1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000    

=== Confusion Matrix ===

 a b   <-- classified as
 9 0 | a = yes
 0 5 | b = no


Asosiasi Analisa :
Minimum support: 0.15 (2 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 17

Generated sets of large itemsets:
Size of set of large itemsets L(1): 12
Size of set of large itemsets L(2): 47
Size of set of large itemsets L(3): 39
Size of set of large itemsets L(4): 6

Best rules found:

 1. outlook=overcast 4 ==> play=yes 4    <conf:(1)> lift:(1.56) lev:(0.1) [1] conv:(1.43)
 2. temperature=cool 4 ==> humidity=normal 4    <conf:(1)> lift:(2) lev:(0.14) [2] conv:(2)
 3. humidity=normal windy=FALSE 4 ==> play=yes 4    <conf:(1)> lift:(1.56) lev:(0.1) [1] conv:(1.43)
 4. outlook=sunny play=no 3 ==> humidity=high 3    <conf:(1)> lift:(2) lev:(0.11) [1] conv:(1.5)
 5. outlook=sunny humidity=high 3 ==> play=no 3    <conf:(1)> lift:(2.8) lev:(0.14) [1] conv:(1.93)
 6. outlook=rainy play=yes 3 ==> windy=FALSE 3    <conf:(1)> lift:(1.75) lev:(0.09) [1] conv:(1.29)
 7. outlook=rainy windy=FALSE 3 ==> play=yes 3    <conf:(1)> lift:(1.56) lev:(0.08) [1] conv:(1.07)
 8. temperature=cool play=yes 3 ==> humidity=normal 3    <conf:(1)> lift:(2) lev:(0.11) [1] conv:(1.5)
 9. outlook=sunny temperature=hot 2 ==> humidity=high 2    <conf:(1)> lift:(2) lev:(0.07) [1] conv:(1)
10. temperature=hot play=no 2 ==> outlook=sunny 2    <conf:(1)> lift:(2.8) lev:(0.09) [1] conv:(1.29)


Tidak ada komentar:

Posting Komentar