Kamis, 19 Januari 2017

CPU.arff

Reff:
http://slideplayer.info/slide/5253199/

%Relative CPU Performance Data. More information can be obtained in the UCI Machine
% Learning repository (http://www.ics.uci.edu/~mlearn/MLSummary.html).
% The used attributes are :
% MYCT: machine cycle time in nanoseconds (integer)
% MMIN: minimum main memory in kilobytes (integer)
% MMAX: maximum main memory in kilobytes (integer)
% CACH: cache memory in kilobytes (integer)
% CHMIN: minimum channels in units (integer)
% CHMAX: maximum channels in units (integer)
% PRP: published relative performance (integer) (target variable)
%

% Original source: UCI machine learning repository.
% Source: collection of regression datasets by Luis Torgo (ltorgo@ncc.up.pt) at
% http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html
% Characteristics: 209 cases; 6 continuous variables

Rumus Performace dari Data CPU.xls Performance 

CPU = * MYCT * MMIN * MMAX * CACH * CHMIN * CHMAX 


simpan data sbb dalam ektensi .arff lalu jalankan WEKA dan mainkan .....

@relation 'cpu'
@attribute MYCT numeric
@attribute MMIN numeric
@attribute MMAX numeric
@attribute CACH numeric
@attribute CHMIN numeric
@attribute CHMAX numeric
@attribute class numeric
@data

125,256,6000,256,16,128,198
29,8000,32000,32,8,32,269
29,8000,32000,32,8,32,220
29,8000,32000,32,8,32,172
29,8000,16000,32,8,16,132
26,8000,32000,64,8,32,318
23,16000,32000,64,16,32,367
23,16000,32000,64,16,32,489
23,16000,64000,64,16,32,636
23,32000,64000,128,32,64,1144
400,1000,3000,0,1,2,38
400,512,3500,4,1,6,40
60,2000,8000,65,1,8,92
50,4000,16000,65,1,8,138
350,64,64,0,1,4,10
200,512,16000,0,4,32,35
167,524,2000,8,4,15,19
143,512,5000,0,7,32,28
143,1000,2000,0,5,16,31
110,5000,5000,142,8,64,120
143,1500,6300,0,5,32,30
143,3100,6200,0,5,20,33
143,2300,6200,0,6,64,61
110,3100,6200,0,6,64,76
320,128,6000,0,1,12,23
320,512,2000,4,1,3,69
320,256,6000,0,1,6,33
320,256,3000,4,1,3,27
320,512,5000,4,1,5,77
320,256,5000,4,1,6,27
25,1310,2620,131,12,24,274
25,1310,2620,131,12,24,368
50,2620,10480,30,12,24,32
50,2620,10480,30,12,24,63
56,5240,20970,30,12,24,106
64,5240,20970,30,12,24,208
50,500,2000,8,1,4,20
50,1000,4000,8,1,5,29
50,2000,8000,8,1,5,71
50,1000,4000,8,3,5,26
50,1000,8000,8,3,5,36
50,2000,16000,8,3,5,40
50,2000,16000,8,3,6,52
50,2000,16000,8,3,6,60
133,1000,12000,9,3,12,72
133,1000,8000,9,3,12,72
810,512,512,8,1,1,18
810,1000,5000,0,1,1,20
320,512,8000,4,1,5,40
200,512,8000,8,1,8,62
700,384,8000,0,1,1,24
700,256,2000,0,1,1,24
140,1000,16000,16,1,3,138
200,1000,8000,0,1,2,36
110,1000,4000,16,1,2,26
110,1000,12000,16,1,2,60
220,1000,8000,16,1,2,71
800,256,8000,0,1,4,12
800,256,8000,0,1,4,14
800,256,8000,0,1,4,20
800,256,8000,0,1,4,16
800,256,8000,0,1,4,22
125,512,1000,0,8,20,36
75,2000,8000,64,1,38,144
75,2000,16000,64,1,38,144
75,2000,16000,128,1,38,259
90,256,1000,0,3,10,17
105,256,2000,0,3,10,26
105,1000,4000,0,3,24,32
105,2000,4000,8,3,19,32
75,2000,8000,8,3,24,62
75,3000,8000,8,3,48,64
175,256,2000,0,3,24,22
300,768,3000,0,6,24,36
300,768,3000,6,6,24,44
300,768,12000,6,6,24,50
300,768,4500,0,1,24,45
300,384,12000,6,1,24,53
300,192,768,6,6,24,36
180,768,12000,6,1,31,84
330,1000,3000,0,2,4,16
300,1000,4000,8,3,64,38
300,1000,16000,8,2,112,38
330,1000,2000,0,1,2,16
330,1000,4000,0,3,6,22
140,2000,4000,0,3,6,29
140,2000,4000,0,4,8,40
140,2000,4000,8,1,20,35
140,2000,32000,32,1,20,134
140,2000,8000,32,1,54,66
140,2000,32000,32,1,54,141
140,2000,32000,32,1,54,189
140,2000,4000,8,1,20,22
57,4000,16000,1,6,12,132
57,4000,24000,64,12,16,237
26,16000,32000,64,16,24,465
26,16000,32000,64,8,24,465
26,8000,32000,0,8,24,277
26,8000,16000,0,8,16,185
480,96,512,0,1,1,6
203,1000,2000,0,1,5,24
115,512,6000,16,1,6,45
1100,512,1500,0,1,1,7
1100,768,2000,0,1,1,13
600,768,2000,0,1,1,16
400,2000,4000,0,1,1,32
400,4000,8000,0,1,1,32
900,1000,1000,0,1,2,11
900,512,1000,0,1,2,11
900,1000,4000,4,1,2,18
900,1000,4000,8,1,2,22
900,2000,4000,0,3,6,37
225,2000,4000,8,3,6,40
225,2000,4000,8,3,6,34
180,2000,8000,8,1,6,50
185,2000,16000,16,1,6,76
180,2000,16000,16,1,6,66
225,1000,4000,2,3,6,24
25,2000,12000,8,1,4,49
25,2000,12000,16,3,5,66
17,4000,16000,8,6,12,100
17,4000,16000,32,6,12,133
1500,768,1000,0,0,0,12
1500,768,2000,0,0,0,18
800,768,2000,0,0,0,20
50,2000,4000,0,3,6,27
50,2000,8000,8,3,6,45
50,2000,8000,8,1,6,56
50,2000,16000,24,1,6,70
50,2000,16000,24,1,6,80
50,8000,16000,48,1,10,136
100,1000,8000,0,2,6,16
100,1000,8000,24,2,6,26
100,1000,8000,24,3,6,32
50,2000,16000,12,3,16,45
50,2000,16000,24,6,16,54
50,2000,16000,24,6,16,65
150,512,4000,0,8,128,30
115,2000,8000,16,1,3,50
115,2000,4000,2,1,5,40
92,2000,8000,32,1,6,62
92,2000,8000,32,1,6,60
92,2000,8000,4,1,6,50
75,4000,16000,16,1,6,66
60,4000,16000,32,1,6,86
60,2000,16000,64,5,8,74
60,4000,16000,64,5,8,93
50,4000,16000,64,5,10,111
72,4000,16000,64,8,16,143
72,2000,8000,16,6,8,105
40,8000,16000,32,8,16,214
40,8000,32000,64,8,24,277
35,8000,32000,64,8,24,370
38,16000,32000,128,16,32,510
48,4000,24000,32,8,24,214
38,8000,32000,64,8,24,326
30,16000,32000,256,16,24,510
112,1000,1000,0,1,4,8
84,1000,2000,0,1,6,12
56,1000,4000,0,1,6,17
56,2000,6000,0,1,8,21
56,2000,8000,0,1,8,24
56,4000,8000,0,1,8,34
56,4000,12000,0,1,8,42
56,4000,16000,0,1,8,46
38,4000,8000,32,16,32,51
38,4000,8000,32,16,32,116
38,8000,16000,64,4,8,100
38,8000,24000,160,4,8,140
38,4000,16000,128,16,32,212
200,1000,2000,0,1,2,25
200,1000,4000,0,1,4,30
200,2000,8000,64,1,5,41
250,512,4000,0,1,7,25
250,512,4000,0,4,7,50
250,1000,16000,1,1,8,50
160,512,4000,2,1,5,30
160,512,2000,2,3,8,32
160,1000,4000,8,1,14,38
160,1000,8000,16,1,14,60
160,2000,8000,32,1,13,109
240,512,1000,8,1,3,6
240,512,2000,8,1,5,11
105,2000,4000,8,3,8,22
105,2000,6000,16,6,16,33
105,2000,8000,16,4,14,58
52,4000,16000,32,4,12,130
70,4000,12000,8,6,8,75
59,4000,12000,32,6,12,113
59,8000,16000,64,12,24,188
26,8000,24000,32,8,16,173
26,8000,32000,64,12,16,248
26,8000,32000,128,24,32,405
116,2000,8000,32,5,28,70
50,2000,32000,24,6,26,114
50,2000,32000,48,26,52,208
50,2000,32000,112,52,104,307
50,4000,32000,112,52,104,397
30,8000,64000,96,12,176,915
30,8000,64000,128,12,176,1150
180,262,4000,0,1,3,12
180,512,4000,0,1,3,14
180,262,4000,0,1,3,18
180,512,4000,0,1,3,21
124,1000,8000,0,1,8,42
98,1000,8000,32,2,8,46
125,2000,8000,0,2,14,52
480,512,8000,32,0,0,67
480,1000,4000,0,0,0,45



=== Run information ===

Scheme:       weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8 -num-decimal-places 4
Relation:     cpu
Instances:    209
Attributes:   7
              MYCT
              MMIN
              MMAX
              CACH
              CHMIN
              CHMAX
              class
Test mode:    evaluate on training data

=== Classifier model (full training set) ===


Linear Regression Model

class =

      0.0491 * MYCT +
      0.0152 * MMIN +
      0.0056 * MMAX +
      0.6298 * CACH +
      1.4599 * CHMAX +
    -56.075

Time taken to build model: 0.16 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0.01 seconds

=== Summary ===

Correlation coefficient                  0.93
Mean absolute error                     37.9748
Root mean squared error                 58.9899
Relative absolute error                 39.592  %
Root relative squared error             36.7663 %
Total Number of Instances              209  



Simple K-Means




Tidak ada komentar:

Posting Komentar